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Abstract

In this paper we develop a simple analytic characterization
of the steady state throughput, as a function of loss rate
and round trip time for a bulk transfer TCP ow, i.e., a
ow with an unlimited amount of data to send. Unlike the
models in [6, 7, 10], our model captures not only the be-
havior of TCP's fast retransmit mechanism (which is also
considered in [6, 7, 10]) but also the e�ect of TCP's timeout
mechanism on throughput. Our measurements suggest that
this latter behavior is important from a modeling perspec-
tive, as almost all of our TCP traces contained more time-
out events than fast retransmit events. Our measurements
demonstrate that our model is able to more accurately pre-
dict TCP throughput and is accurate over a wider range of
loss rates.

1 Introduction

A signi�cant amount of today's Internet tra�c, including
WWW (HTTP), �le transfer (FTP), email (SMTP), and re-
mote access (Telnet) tra�c, is carried by the TCP transport
protocol [18]. TCP together with UDP form the very core
of today's Internet transport layer. Traditionally, simula-
tion and implementation/measurement have been the tools
of choice for examining the performance of various aspects of
TCP. Recently, however, several e�orts have been directed
at analytically characterizing the throughput of TCP's con-
gestion control mechanism, as a function of packet loss and
round trip delay [6, 10, 7]. One reason for this recent in-
terest is that a simple quantitative characterization of TCP
throughput under given operating conditions o�ers the pos-
sibility of de�ning a \fair share" or \TCP-friendly" [6] through-
put for a non-TCP ow that interacts with a TCP connec-
tion. Indeed, this notion has already been adopted in the
design and development of several multicast congestion con-
trol protocols [19, 20].
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In this paper we develop a simple analytic characteriza-
tion of the steady state throughput of a bulk transfer TCP
ow (i.e., a ow with a large amount of data to send, such
as FTP transfers) as a function of loss rate and round trip
time. Unlike the recent work of [6, 7, 10], our model captures
not only the behavior of TCP's fast retransmit mechanism
(which is also considered in [6, 7, 10]) but also the e�ect
of TCP's timeout mechanism on throughput. The measure-
ments we present in Section 3 indicate that this latter behav-
ior is important from a modeling perspective, as we observe
more timeout events than fast retransmit events in almost
all of our TCP traces. Another important di�erence between
ours and previous work is the ability of our model to accu-
rately predict throughput over a signi�cantly wider range
of loss rates than before; measurements presented in [7] as
well the measurements presented in this paper, indicate that
this too is important. We also explicitly model the e�ects
of small receiver-side windows. By comparing our model's
predictions with a number of TCP measurements made be-
tween various Internet hosts, we demonstrate that our model
is able to more accurately predict TCP throughput and is
able to do so over a wider range of loss rates.

The remainder of the paper is organized as follows. In
Section 2 we describe our model of TCP congestion control
in detail and derive a new analytic characterization of TCP
throughput as a function of loss rate and average round trip
time. In Section 3 we compare the predictions of our model
with a set of measured TCP ows over the Internet, having
as their endpoints sites in both United States and Europe.
Section 4 discusses the assumptions underlying the model
and a number of related issues in more detail. Section 5
concludes the paper.

2 A Model for TCP Congestion Control

In this section we develop a stochastic model of TCP conges-
tion control that yields a relatively simple analytic expres-
sion for the throughput of a saturated TCP sender, i.e., a
ow with an unlimited amount of data to send, as a function
of loss rate and average round trip time (RTT).

TCP is a protocol that can exhibit complex behavior,
especially when considered in the context of the current In-
ternet, where the tra�c conditions themselves can be quite
complicated and subtle [14]. In this paper, we focus our at-
tention on the congestion avoidance behavior of TCP and
its impact on throughput, taking into account the depen-
dence of congestion avoidance on ACK behavior, the manner
in which packet loss is inferred (e.g., whether by duplicate
ACK detection and fast retransmit, or by timeout), limited



receiver window size, and average round trip time (RTT).
Our model is based on the Reno avor of TCP, as it is by
far the most popular implementation in the Internet today
[13, 12]. We assume that the reader is familiar with TCP
Reno congestion control (see for example [4, 17, 16]) and we
adopt most of our terminology from [4, 17, 16].

Our model focuses on TCP's congestion avoidance mech-
anism, where TCP's congestion control window size, W; is
increased by 1=W each time an ACK is received. Con-
versely, the window is decreased whenever a lost packet is
detected, with the amount of the decrease depending on
whether packet loss is detected by duplicate ACKs or by
timeout, as discussed shortly.

We model TCP's congestion avoidance behavior in terms
of \rounds." A round starts with the back-to-back transmis-
sion of W packets, where W is the current size of the TCP
congestion window. Once all packets falling within the con-
gestion window have been sent in this back-to-back manner,
no other packets are sent until the �rst ACK is received for
one of these W packets. This ACK reception marks the end
of the current round and the beginning of the next round.
In this model, the duration of a round is equal to the round
trip time and is assumed to be independent of the window
size, an assumption also adopted (either implicitly or ex-
plicitly) in [6, 7, 10]. Note that we have also assumed here
that the time needed to send all the packets in a window is
smaller than the round trip time; this behavior can be seen
in observations reported in [2, 12].

At the beginning of the next round, a group of W 0 new
packets will be sent, where W 0 is the new size of the con-
gestion control window. Let b be the number of packets
that are acknowledged by a received ACK. Many TCP re-
ceiver implementations send one cumulative ACK for two
consecutive packets received (i.e., delayed ACK, [16]), so b
is typically 2. If W packets are sent in the �rst round and
are all received and acknowledged correctly, then W=b ac-
knowledgments will be received. Since each acknowledgment
increases the window size by 1=W; the window size at the
beginning of the second round is then W 0 =W +1=b. That
is, during congestion avoidance and in the absence of loss,
the window size increases linearly in time, with a slope of
1=b packets per round trip time.

In the following subsections, we model TCP's behavior
in the presence of packet loss. Packet loss can be detected in
one of two ways, either by the reception at the TCP sender
of \triple-duplicate" acknowledgments, i.e., four ACKs with
the same sequence number, or via time-outs. We denote the
former event as a \TD" (triple-duplicate) loss indication,
and the latter as a \TO" loss indication.

We assume that a packet is lost in a round independently
of any packets lost in other rounds, a modeling assumption
justi�ed to some extent by past studies [1] that have shown
that periodic UDP packets that are separated by as little
as 40 msec tend to get lost only in singleton bursts. On
the other hand, we assume that packet losses are correlated
among the back-to-back transmissions within a round: if a
packet is lost, all remaining packets transmitted until the
end of that round are also lost. This bursty loss behavior,
which has been shown to arise from the drop-tail queuing
discipline (adopted in many Internet routers), is discussed
in [2, 3]. We discuss it further in Section 4.

We develop a stochastic model of TCP congestion con-
trol in several steps, corresponding to its operating regimes:
when loss indications are exclusively TD (Section 2.1), when
loss indications are both TD and TO (Section 2.2), and
when the congestion window size is limited by the receiver's

advertised window (Section 2.3). We note that we do not
model certain aspects of TCP's behavior (e.g., fast recov-
ery) but believe we have captured the essential elements of
TCP behavior, as indicated by the generally very good �ts
between model predictions and measurements made on nu-
merous commercial TCP implementations, as discussed in
Section 3. A more detailed discussion of model assumptions
and related issues is presented in Section 4. Also note that
in the following, we measure throughput in terms of packets
per unit of time, instead of bytes per unit of time.

2.1 Loss indications are exclusively \triple-duplicate" ACKs

In this section we assume that loss indications are exclu-
sively of type \triple-duplicate" ACK (TD), and that the
window size is not limited by the receiver's advertised ow
control window. We consider a TCP ow starting at time
t = 0, where the sender always has data to send. For any
given time t > 0, we de�ne Nt to be the number of pack-
ets transmitted in the interval [0; t], and Bt = Nt=t, the
throughput on that interval. Note that Bt is the number of
packets sent per unit of time regardless of their eventual fate
(i.e., whether they are received or not). Thus, Bt represents
the throughput of the connection, rather than its goodput.
We de�ne the long-term steady-state TCP throughput B to
be

B = lim
t!1

Bt = lim
t!1

Nt

t

We have assumed that if a packet is lost in a round, all re-
maining packets transmitted until the end of the round are
also lost. Therefore we de�ne p to be the probability that
a packet is lost, given that either it is the �rst packet in its
round or the preceding packet in its round is not lost. We
are interested in establishing a relationship B(p) between
the throughput of the TCP connection and p, the loss prob-
ability de�ned above.

A sample path of the evolution of congestion window size
is given in Figure 1. Between two TD loss indications, the
sender is in congestion avoidance, and the window increases
by 1=b packets per round, as discussed earlier. Immediately
after the loss indication occurs, the window size is reduced
by a factor of two.

We de�ne a TD period (TDP) to be a period between two
TD loss indications (see Figure 1). For the i-th TD period
we de�ne Yi to be the number of packets sent in the period,
Ai the duration of the period, and Wi the window size at
the end of the period. Considering fWigi to be a Markov
regenerative process with rewards fYigi (see for example
[15]), it can be shown that

B =
E[Y ]

E[A]
(1)

In order to derive an expression for B, the long-term steady-
state TCP throughput, we must next derive expressions for
the mean of Y and A.

Consider a TD period as in Figure 2. A TD period starts
immediately after a TD loss indication, and thus the current
congestion window size is equal to Wi�1=2, half the size of
window before the TD occurred. At each round the window
is incremented by 1=b and the number of packets sent per
round is incremented by one every b rounds. We denote
by �i the �rst packet lost in TDPi, and by Xi the round
where this loss occurs (see Figure 2). After packet �i,Wi�1
more packets are sent in an additional round before a TD
loss indication occurs (and the current TD period ends), as
discussed in more detail in Section 2.2. Thus, a total of
Yi = �i + Wi � 1 packets are sent in Xi + 1 rounds. It
follows that:

E[Y ] = E[�] + E[W ]� 1 (2)
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Figure 1: Evolution of window size over time when loss indications are triple duplicate ACKs
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Figure 2: Packets sent during a TD period

To derive E[�], consider the random process f�igi, where
�i is the number of packets sent in a TD period up to and
including the �rst packet that is lost. Based on our assump-
tion that packets are lost in a round independently of any
packets lost in other rounds, f�igi is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables.
Given our loss model, the probability that �i = k is equal
to the probability that exactly k�1 packets are successfully
acknowledged before a loss occurs

P [� = k] = (1 � p)k�1p; k = 1; 2; : : : (3)

The mean of � is thus

E[�] =

1X
k=1

(1� p)k�1pk =
1

p
(4)

Form (2) and (4) it follows that

E[Y ] =
1� p

p
+E[W ] (5)

To derive E[W ] and E[A], consider again TDPi. We de-
�ne rij to be the duration (round trip time) of the j-th round

of TDPi. Then, the duration of TDPi is Ai =
PXi+1

j=1
rij .

We consider the round trip times rij to be random variables,
that are assumed to be independent of the size of congestion
window, and thus independent of the round number, j. It
follows that

E[A] = (E[X] + 1)E[r] (6)

Henceforth, we denote by RTT = E[r] the average value of
round trip time.

Finally, to derive an expression for E[X], we consider the
evolution of Wi as a function of the number of rounds, as in
Figure 2. To simplify our exposition, in this derivation we
assume thatWi�1=2 and Xi=b are integers. First we observe
that during the i-th TD period, the window size increases
between Wi�1=2 and Wi. Since the increase is linear with
slope 1=b, we have:

Wi =
Wi�1

2
+
Xi

b
; i = 1; 2; : : : (7)

The fact that Yi packets are transmitted in TDPi is ex-
pressed by

Yi =

Xi=b�1X
k=0

(
Wi�1

2
+ k)b+ �i (8)

=
XiWi�1

2
+
Xi

2
(
Xi

b
� 1) + �i (9)

=
Xi

2
(
Wi�1

2
+Wi � 1) + �i using (7) (10)

where �i is the number of packets sent in the last round (see
Figure 2). fWigi is a Markov process for which a stationary
distribution can be obtained numerically, based on (7) and
(10) and on the probability density function of f�ig given
in (3). We can also compute the probability distribution
of fXig. However, a simpler approximate solution can be
obtained by assuming that fXig and fWig are mutually
independent sequences of i.i.d. random variables. With this
assumption, it follows from (7), (10) and (5) that

E[W ] =
2

b
E[X] (11)



and,

1� p

p
+ E[W ] =

E[X]

2

�
E[W ]

2
+E[W ]� 1

�
+ E[�] (12)

We consider that �i, the number of packets in the last round,
is uniformly distributed between 1 and Wi, and thus E[�] =
E[W ]=2. From (11) and (12), we have

E[W ] =
2 + b

3b
+

r
8(1 � p)

3bp
+

�
2 + b

3b

�2
(13)

Observe that,

E[W ] =

r
8

3bp
+ o(1=

p
p) (14)

i.e., E[W ] �
q

8
3bp

for small values of p. From (11), (6) and

(13), it follows

E[X] =
2 + b

6
+

r
2b(1� p)

3p
+

�
2 + b

6

�2
(15)

E[A] = RTT

 
2 + b

6
+

r
2b(1 � p)

3p
+

�
2 + b

6

�2
+ 1

!
(16)

Observe that,

E[X] =

r
2b

3p
+ o(1=

p
p) (17)

From (1) and (5) we have

B(p) =

1�p
p

+ E[W ]

E[A]
(18)

=

1�p
p

+ 2+b
3b

+

r
8(1�p)
3bp

+

�
2+b
3b

�2
RTT

�
2+b
6

+

q
2b(1�p)

3p
+ ( 2+b

6
)2 + 1

� (19)

Which can be expressed as:

B(p) =
1

RTT

r
3

2bp
+ o(1=

p
p) (20)

Thus, for small values of p, (20) reduces to the throughput
formula in [6] for b = 1.

We next extend our model to include TCP behaviors
(such as timeouts and receiver-limited windows) not consid-
ered in previous analytic studies of TCP congestion control.

2.2 Loss indications are triple-duplicate ACKs and time-
outs

So far, we have considered TCP ows where all loss indi-
cations are due to \triple-duplicate" ACKs. Our measure-
ments show (see Table 2) that in many cases the majority of
window decreases are due to time-outs, rather than fast re-
transmits. Therefore, a good model should capture time-out
loss indications.

In this section we extend our model to include the case
where the TCP sender times-out. This occurs when packets
(or ACKs) are lost, and less than three duplicate ACKs are
received. The sender waits for a period of time denoted by
T0, and then retransmits non-acknowledged packets. Follow-
ing a time-out, the congestion window is reduced to one, and
one packet is thus resent in the �rst round after a time out.

In the case that another time-out occurs before successfully
retransmitting the packets lost during the �rst time out, the
period of time out doubles to 2T0; this doubling is repeated
for each unsuccessful retransmission until 64T0 is reached,
after which the time out period remains constant at 64T0.

An example of the evolution of congestion window size
is given in Figure 3. Let ZTOi denote the duration of a
sequence of time-outs and ZTDi the time interval between
two consecutive time-out sequences. De�ne Si to be

Si = ZTDi + ZTOi

Also, de�ne Mi to be the number of packets sent during Si.
Then, f(Si;Mi)gi is an i.i.d. sequence of random variables,
and we have

B =
E[M ]

E[S]

We extend our de�nition of TD periods given in Section 2.1
to include periods starting after, or ending in, a TO loss in-
dication (besides periods between two TD loss indications).
Let ni be the number of TD periods in interval ZTDi . For
the j-th TD period of interval ZTDi we de�ne Yij to be the
number of packets sent in the period, Aij to be the dura-
tion of the period, Xij to be the number of rounds in the
period, and Wij to be the window size at the end of the
period. Also, Ri denotes the number of packets sent during
time-out sequence ZTOi . Observe here that Ri counts the
total number of packet transmissions in ZTOi , and not just
the number of di�erent packets sent. This is because, as dis-
cussed in Section 2.1, we are interested in the throughput of
a TCP ow, rather than its goodput. We have

Mi =

niX
j=1

Yij +Ri; Si =

niX
j=1

Aij + ZTOi

and, thus,

E[M ] = E[

niX
j=1

Yij ] +E[R]; E[S] = E[

niX
j=1

Aij ] +E[ZTO]

If we assume fnigi to be an i.i.d. sequence of random
variables, independent of fYijg and fAijg, then we have

E[(

niX
j=1

Yij)i] = E[n]E[Y ]; E[(

niX
j=1

Aij)i] = E[n]E[A]

To derive E[n] observe that, during ZTDi , the time between
two consecutive time-out sequences, there are ni TDPs, where
each of the �rst ni � 1 end in a TD, and the last TDP ends
in a TO. It follows that in ZTDi there is one TO out of ni
loss indications. Therefore, if we denote by Q the probabil-
ity that a loss indication ending a TDP is a TO, we have
Q = 1=E[n]. Consequently,

B =
E[Y ] +Q � E[R]

E[A] +Q � E[ZTO] (21)

Since Yij and Aij do not depend on time-outs, their means
are those derived in (4) and (16). To compute TCP through-
put using (21) we must still determine Q;E[R] and E[ZTO]:

We begin by deriving an expression for Q: Consider the
round of packets where a loss indication occurs; it will be re-
ferred to as the \penultimate" round (see Figure 4) 1. Let w

1In Figure 4 each ACK acknowledges individual packets (i.e.,
ACKs are not delayed). We have chosen this for simplicity of il-
lustration. We will see that the analysis does not depend on whether
ACKs are delayed or not.
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be the current congestion window size. Thus packets f1::fw
are sent in the penultimate round. Packets f1::fk are ac-
knowledged, and packet fk+1 is the �rst one to be lost (or
not ACKed). We again assume that packet losses are corre-
lated within a round: if a packet is lost, so are all packets
that follow, till the end of the round. Thus, all packets fol-
lowing fk+1 in the penultimate round are also lost. However,
since packets f1..fk are ACKed, another k packets, s1::sk are
sent in the next round, which we will refer to as the \last"
round. This round of packets may have another loss, say
packet sm+1. Again, our assumptions on packet loss corre-
lation mandates that packets sm+2::sk are also lost in the
last round. Them packets successfully sent in the last round
are responded to by ACKs for packet fk, which are counted
as duplicate ACKs. These ACKs are not delayed ([16], p.
312), so the number of duplicate ACKs is equal to the num-
ber of successfully received packets in the last round. If the
number of such ACKs is higher than three, then a TD in-
dication occurs, otherwise, a TO occurs. In both cases the
current period between losses, TDP, ends. We denote by
A(w; k) the probability that the �rst k packets are ACKed
in a round of w packets, given there is a sequence of one or
more losses in the round. Then

A(w; k) =
(1� p)kp

1� (1 � p)w

Also, we de�ne C(n;m) to be the probability thatm packets

are ACKed in sequence in the last round (where n packets
were sent) and the rest of the packets in the round, if any,
are lost. Then,

C(n;m) =

n
(1� p)mp; m � n� 1
(1� p)n; m = n

Then, Q̂(w), the probability that a loss in a window of size
w is a TO, is given by

Q̂(w) =

(
1 if w � 3P2

k=0
A(w; k) +

Pw

k=3
A(w; k)

P2

m=0
C(k;m) otherwise

(22)
since a TO occurs if the number of packets successfully
transmitted in the penultimate round, k, is less than three,
or otherwise if the number of packets successfully transmit-
ted in the last round, m is less than three. Also, due to the
assumption that packet sm+1 is lost independently of packet
fk+1 (since they occur in di�erent rounds), the probability
that there is a loss at fk+1 in the penultimate round and a
loss at sm+1 in the last round equals A(w; k) �C(k;m), and
(22) follows.



After algebraic manipulations, we have

Q̂(w) = min

�
1;
(1� (1� p)3)(1 + (1� p)3(1 � (1 � p)w�3))

1� (1� p)w

�
(23)

Observe (for example, using L'Hopital's rule) that

lim
p!0

Q̂(w) =
3

w
:

Numerically we �nd that a very good approximation of Q̂ is

Q̂(w) � min(1;
3

w
) (24)

Q, the probability that a loss indication is a TO, is

Q =

1X
w=1

Q̂(w)P [W = w] = E[Q̂]

We approximate
Q � Q̂(E[W ]) (25)

where E[W ] is from (13).
We consider next the derivation of E[R] and E[ZTO].

For this, we need the probability distribution of the number
of timeouts in a TO sequence, given that there is a TO. We
have observed in our TCP traces that in most cases, one
packet is transmitted between two time-outs in sequence.
Thus, a sequence of k TOs occurs when there are k � 1
consecutive losses (the �rst loss is given) followed by a suc-
cessfully transmitted packet. Consequently, the number of
TOs in a TO sequence has a geometric distribution, and
thus

P [R = k] = pk�1(1� p)

Then we can compute R's mean

E[R] =

1X
k=1

kP [R = k] =
1

1� p
(26)

Next, we focus on E[ZTO], the average duration of a time-
out sequence excluding retransmissions, which can be com-
puted in a similar way. We know that the �rst six time-outs
in one sequence have length 2i�1T0, i = 1 : : : 6, with all im-
mediately following timeouts having length 64T0. Then, the
duration of a sequence with k time-outs is

Lk =

n
(2k � 1)T0 for k � 6
(63 + 64(k � 6))T0 for k � 7

and the mean of ZTO is

E[ZTO] =

1X
k=1

LkP [R = k]

= T0
1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1� p

Armed now with expressions for Q;E[S]; E[R] and E[ZTO ]
we can now substitute these expressions into equation (21)
to obtain the following for B(p):

B(p) =

1�p
p

+ E[W ] + Q̂(E[W ]) 1
1�p

RTT (E[X] + 1) + Q̂(E[W ])T0
f(p)
1�p

(27)

where:

f(p) = 1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6 (28)

Q̂ is given in (23), E[W ] in (13) and E[X] in (16). Using
(24), (14) and (17), we have that (27) can be approximated
by

B(p) � 1

RTT
p

2bp
3

+ T0min

�
1; 3
p

3bp
8

�
p(1 + 32p2)

(29)

2.3 The impact of window limitation

So far, we have not considered any limitation on the con-
gestion window size. At the beginning of TCP ow estab-
lishment, however, the receiver advertises a maximum bu�er
size which determines a maximum congestion window size,
Wmax. As a consequence, during a period without loss indi-
cations, the window size can grow up to Wmax, but will not
grow further beyond this value. An example of the evolution
of window size is depicted in Figure 5.

To simplify the analysis of the model, we make the fol-
lowing assumption. Let us denote by Wu the unconstrained
window size, the mean of which is given in (13)

E[Wu] =
2 + b

3b
+

r
8(1� p)

3bp
+

�
2 + b

3b

�2
(30)

We assume that if E[Wu] < Wmax, we have the approxima-
tion E[W ] � E[Wu]. In other words, if E[Wu] < Wmax, the
receiver-window limitation has negligible e�ect on the long
term average of the TCP throughput, and thus the TCP
throughput is given by (27).

On the other hand, if Wmax � E[Wu], we approximate
E[W ] � Wmax. In this case, consider an interval ZTD be-
tween two time-out sequences consisting of a series of TD
periods as in Figure 6. During the �rst TDP, the window
grows linearly up to Wmax for U1 rounds, then remains con-
stant for V1 rounds, and then a TD indication occurs. The
window then drops to Wmax=2, and the process repeats.
Thus,

Wmax =
Wmax

2
+
Ui

b
; 8i � 2

which implies E[U ] = (b=2)Wmax. Also, considering the
number of packets sent in the i-th TD period, we have

Yi =
Ui

2
(
Wmax

2
+Wmax) + ViWmax

and then

E[Y ] =
3

4
WmaxE[U ] +WmaxE[V ] =

3b

8
W 2
max +WmaxE[V ]

Since Yi, the number of packets in the i-th TD period, does
not depend on window limitation, E[Y ] is given by (5),
E[Y ] = (1� p)=p+Wmax, and thus

E[V ] =
1� p

pWmax
+ 1� 3b

8
Wmax

Finally, since Xi = Ui + Vi, we have

E[X] = E[U ] + E[V ] =
b

8
Wmax +

1� p

pWmax
+ 1

By substituting this result in (27), we obtain the TCP through-
put, B(p), when the window is limited

B(p) =

1�p
p

+Wmax + Q̂(Wmax)
1

1�p

RTT ( b
8
Wmax +

1�p
pWmax

+ 2) + Q̂(Wmax)T0
f(p)
1�p

In conclusion, the complete characterization of TCP through-
put, B(p), is:

B(p) =

8>><
>>:

1�p
p

+E[W ]+Q̂(E[W ]) 1
1�p

RTT ( b
2
E[Wu]+1)+Q̂(E[W ])T0

f(p)
1�p

if E[Wu] < Wmax

1�p
p

+Wmax+Q̂(Wmax)
1

1�p

RTT ( b
8
Wmax+

1�p
pWmax

+2)+Q̂(Wmax)T0
f(p)
1�p

otherwise

(31)
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where f(p) is given in (28), Q̂ is given in (23) and E[Wu] in
(13). In the following sections we will refer to (31) as the
\full model". The following approximation of B(p) follows
from (29) and (31):

B(p) � min

0
@Wmax

RTT
;

1

RTT
p

2bp
3

+ T0min

�
1; 3
p

3bp
8

�
p(1 + 32p2)

1
A

(32)
In Section 3 we verify that equation (32) is indeed a very
good approximation of equation 31. Henceforth we will refer
to (32) as the \approximate model".

3 Measurements and Trace Analysis

Equations (31) and (32) provide an analytic characteriza-
tion of TCP as a function of packet loss indication rate,
RTT, and maximum window size. In this section we empiri-
cally validate these formulae, using measurement data from
37 TCP connections established between 18 hosts scattered
across United States and Europe.

Table 1 lists the domains and operating systems of the
18 hosts. All data sets are for unidirectional bulk data
transfers. We gathered the measurement data by running
tcpdump at the sender, and analyzing its output with a set
of analysis programs developed by us. These programs ac-
count for various measurement and implementation related
problems discussed in [13, 12]. For example, when we an-
alyze traces from a Linux sender, we account for the fact
that TD events occur after getting only two duplicate acks
instead of three. Our trace analysis programs were further
veri�ed by checking them against tcptrace[9] and ns [8].

Table 2 summarizes data from 24 data sets, each of which
corresponds to a one hour long TCP connection in which the
sender behaves as an \in�nite source" { it always has data

Receiver Domain Operating System
ada hofstra.edu Irix 6.2
afer cs.umn.edu Linux
al cs.wm.edu Linux 2.0.31
alps cc.gatech.edu SunOS 4.1.3
babel cs.umass.edu SunOS 5.5.1

baskerville cs.arizona.edu SunOS 5.5.1
ganef cs.ucla.edu SunOS 5.5.1
imagine cs.umass.edu win95
manic cs.umass.edu Irix 6.2
mafalda inria.fr SunOS 5.5.1
maria wustl.edu SunOS 4.1.3
modi4 ncsa.uiuc.edu Irix 6.2
pif inria.fr Solaris 2.5
pong usc.edu HP-UX
spi� sics.se SunOS 4.1.4
sutton cs.columbia.edu SunOS 5.5.1
tove cs.umd.edu SunOS 4.1.3
void US site Linux 2.0.30

Table 1: Domains and Operating Systems of Hosts



Sender Receiver Packets Loss TD TO RTT Time
Sent Indic. Out

manic alps 54402 722 19 703 0.207 2.505
manic baskerville 58120 735 306 429 0.243 2.495
manic ganef 58924 743 272 471 0.226 2.405
manic mafalda 56283 494 2 492 0.233 2.146
manic maria 68752 649 1 648 0.180 2.416
manic spi� 117992 784 47 737 0.211 2.274
manic sutton 81123 1638 988 650 0.204 2.459
manic tove 7938 264 1 263 0.275 3.597
void alps 37137 838 7 831 0.162 0.489
void baskerville 32042 853 339 514 0.482 1.094
void ganef 60770 1112 414 696 0.254 0.637
void maria 93005 1651 33 1618 0.152 0.417
void spi� 65536 671 72 599 0.415 0.749
void sutton 78246 1928 840 1088 0.211 0.601
void tove 8265 856 5 843 0.272 1.356
babel alps 13460 1466 0 1461 0.194 1.359
babel baskerville 62237 1753 197 1556 0.253 0.429
babel ganef 86675 2125 398 1727 0.201 0.306
babel spi� 57687 1120 0 1120 0.331 0.953
babel sutton 83486 2320 685 1635 0.210 0.705
babel tove 83944 1516 1 1514 0.194 0.520
pif alps 83971 762 0 760 0.168 7.278
pif imagine 44891 1346 15 1329 0.229 0.700
pif manic 34251 1422 43 1377 0.257 1.454

Table 2: Summary data from 1hr traces

to send and thus TCP throughput is only limited by the
TCP congestion control. The experiments were performed
at randomly selected times during 1997 and beginning of
1998. The third and fourth columns of Table 2 indicate
the number of packets sent and the number of loss indica-
tions respectively (triple duplicate ack or timeout). Dividing
the total number of loss indications by the total number of
packets sent, yields an approximate value of p. This ap-
proximation is similar to the one used in [7]. The next two
columns show a breakdown of the loss indications by type:
the number of TD events, and the number of timeouts. Note
that p depends only on the total number of loss indications,
and not on their type. The last two columns report the
average round trip time, and average duration of a \single"
timeout T0. These values have been averaged over the entire
trace. When calculating round trip time values, we follow
Karn's algorithm [5], in an attempt to minimize the impact
of timeouts and retransmissions on the RTT estimates.

Table 3 reports summary results from additional 13 data
sets. In these cases, each data set represents 100 serially-
initiated TCP connections between a given sender-receiver
pair. Each connection lasted 100 seconds, and was followed
by a 50 second gap before the next connection was initi-
ated. These experiments were performed at randomly se-
lected times during 1998. The data in columns 3-10 of Ta-
ble 3 are cumulative over the set of 100 traces for the given
source-destination pair. The last two columns report the av-
erage value of round trip time and \single" timeout. These
values have been averaged over all one hundred traces for
the given source-destination pair.

An important observation to be drawn from the data in
these tables is that, in all traces, timeouts constitute the
majority or a signi�cant fraction of the total number of loss
indications. This underscores the importance of including
the e�ects of timeouts in the model of TCP congestion con-
trol. We have also noticed that exponential backo� due to
multiple timeouts occurs with signi�cant frequency. More
details are provided in [11].

Next, we use the measurement data described above to
validate our model proposed in Section 2. Figures 7-12 plot
the measured throughput in our trace data, the model of

Sender Receiver Packets Loss TD TO RTT Time
Sent Indic. Out

manic ada 531533 6432 4320 2112 0.141 2.223
manic afer 255674 4577 2584 1993 0.180 2.3
manic al 264002 4720 2841 1879 0.188 2.354
manic alps 667296 3797 841 2956 0.112 1.915
manic baskerville 89244 1638 627 1011 0.473 3.226
manic ganef 160152 2470 1048 1422 0.215 2.607
manic mafalda 171308 1332 9 1323 0.250 2.512
manic maria 316498 2476 5 2471 0.116 1.879
manic modi4 282547 6072 3976 2096 0.174 2.26
manic pong 358535 4239 2328 1911 0.176 2.137
manic spi� 298465 2035 159 1876 0.253 2.454
manic sutton 348926 6024 3694 2330 0.168 2.185
manic tove 262365 2603 6 2597 0.115 1.955

Table 3: Summary data from 100s traces

[7], as well as the predicted throughput from our proposed
model given in (31) as described below. The title of the trace
indicates the average round trip time, the average \single"
timeout duration T0, and the maximum window size Wmax

advertised by the receiver (in number of packets). The x-
axis represents the frequency of loss indications, p, while
y-axis represents the number of packets sent.

Each one-hour trace was divided into 36 consecutive 100
second intervals, and each plotted point on a graph repre-
sents the number of packets sent versus the number of loss
indications during a 100s interval. While dividing a continu-
ous trace into �xed sized intervals can lead to some inaccura-
cies in measuring p, (e.g., the interval boundaries may occur
within timeout intervals, thus perhaps not attributing a loss
event to the interval where most of its impact is felt), we
believe that by using interval sizes of 100s, which are longer
than most timeouts, we have minimized the impact of such
inaccuracies. Each 100 second interval is classi�ed into one
of four categories: intervals of type \TD" did not su�er any
timeout (only triple duplicate acks), intervals of type \T0"
su�ered at least one \single" timeout but no exponential
backo�, \T1" represents intervals that su�ered a single ex-
ponential backo� at least once (i.e a \double" timeout) etc.
The line labeled \TD Only" (stands for Triple-Duplicate
acks Only) plots the predictions made by the model de-
scribed in [7], which is essentially the same model as de-
scribed in [6], while accounting for delayed acks. The line
labeled \Proposed (Full)" represents the model described by
Equation (31). It has been pointed out in [6] that the \TD
Only" model may not be accurate when the frequency of
loss indications is higher than 5%. We observe that in many
traces the frequency of loss indications is higher than 5%
and that indeed the \TD Only" model predicts values for
TCP throughput much higher than measured. Also, in sev-
eral traces (see for example, Figure 7) we observe that TCP
throughput is limited by the receiver's advertised window
size. This is not accounted for in the \TD Only" model,
and thus \TD Only" overestimates the throughput at low p
values.

Figures 13-17 show similar graphs, where each point rep-
resents an individual 100 second TCP connection. To plot
the model predictions, we used round trip and timeout du-
rations that were averaged over all 100 traces (these values
also appear in Table 3). Equation (32) in Section 2 rep-
resents the simple, but approximate form (32) of the full
model given in (31). In Figure 18, we plot the predictions
of the approximate model along with the full model. The
results for other data sets are similar.

In order to accurately evaluate the models, we compute
the average error as follows:
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Figure 7: manic to baskerville
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Figure 8: pif to imagine
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Figure 9: pif to manic
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Figure 10: void to alps
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Figure 11: void to tove
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Figure 12: babel to alps

� Hour-long traces: We divide each trace into 100
second intervals, and compute the number of packets
sent during that interval (here denoted as Nobserved)
as well as the value of loss frequency (here pobserved).
We also calculate the average value of round trip time
and timeout for the entire trace (these values are avail-
able in Table 2). Then, for each 100 second interval we
calculate the number of packets predicted by our pro-
posed model, Npredicted = B(pobserved) � 100s, where

B is from (31). The average error is given by:P
observations

jNpredicted�Nobserved j

Nobserved

number of observations

The average error of our approximate model (using B
from (32)) and of \TD Only" are calculated in a sim-
ilar manner. A smaller average error indicates better
model accuracy. In Figure 19 we plot these error values
to allow visual comparison. On the x-axis, the traces
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Figure 13: manic to ganef

1

10

100

1000

10000

0.001 0.01 0.1 1

N
um

be
r 

of
 P

ac
ke

ts
 S

en
t

Frequency of Loss Indications (p)

manic-mafalda, RTT=0.2501, TO=2.5127, WMax=8.0, 100x100s

TD
T0
T1
T2

T3 or more
TD Only

Proposed (Full)

Figure 14: manic to mafalda
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Figure 15: manic to spi�
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Figure 16: manic to baskerville
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Figure 17: manic to sutton
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Figure 18: manic to spi�, with approximate model

are identi�ed by sender and receiver names. The order
in which the traces appear is such that, from left to
right, the average error for the \TD Only" model is
increasing. The points corresponding to a given model
are joined by line segments only for better visual rep-
resentation of the data.

� 100 second traces: We use the value of round trip
time and timeout calculated for each 100-second trace.
The error values are shown in Figure 20.

It can be seen from Figures 19 and 20 that in most cases,
our proposed model is a better estimator of the observed
values than the \TD Only" model. Our approximate model
also generally provides more accurate predictions than the
\TD Only" model, and is quite close to the predictions made
by the full model. As one would expect, our model does not
match all of the observations. We show an example of this
in Figure 17. This is probably due to a large number of
triple duplicate acks observed for this trace set.



Figure 19: Comparison of the models for 1hr traces
Figure 20: Comparison of the models for 100s traces

4 A Discussion of the Model and the Experimental Re-
sults

In this section, we discuss various simplifying assumptions
made while constructing the model in Section 2, and their
impact on the results described in Section 3.

Our model does not capture the subtleties of the fast re-
covery algorithm. We believe that the impact of this omis-
sion is quite small, and that the results presented in Section
3 validate this assumption indirectly. We have also assumed
that the time spent in slow start is negligible compared to
the length of our traces. Both these assumptions have also
been made in [6, 7, 10].

We have assumed that packet losses within a round are
correlated. Justi�cation for this assumption comes from the
fact that the vast majority of the routers in Internet today
use the drop-tail policy for packet discard. Under this pol-
icy, all packets that arrive at a full bu�er are dropped. As
packets in a round are sent back-to-back, if a packet arrives
at a full bu�er, it is likely that the same happens with the
rest of the packets in the round. Packet loss correlation at
drop-tail routers was also pointed out in [2, 3]. In addition,
we assume that losses in one round are independent of losses
in other rounds. This is justi�ed by the fact that packets
in di�erent rounds are separated by one RTT or more, and
thus they are likely to encounter bu�er states that are inde-
pendent of each other. This is also con�rmed by �ndings in
[1].

Another assumption we made, that is also implicit in
[6, 7, 10], is that the round trip time is independent of the
window size. We have measured the coe�cient of correla-
tion between the duration of round samples and the number
of packets in transit during each sample. For most traces
summarized in Table 2, the coe�cient of correlation is in
the range of -0.1 to +0.1, thus lending credence to the sta-
tistical independence between round trip time and window
size. However, when we conducted similar experiments with
receivers at the end of a modem line, we found the coe�cient
of correlation to be as high as 0.97. We speculate that this
is a combined e�ect of a slow link and a bu�er devoted ex-
clusively to this connection (probably at the ISP, just before
the modem). As a result, our model, as well as the models
described in [6, 10, 7] fail to match the observed data in the
case of a receiver at the end of a modem. In Figure 21, we
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Figure 21: manic to p5

plot results from one such experiment. The receiver was a
Pentium PC, running Linux 2.0.27 and was connected to the
Internet via a commercial service provider using a 28.8Kbps
modem. The results are for a 1 hour connection divided into
100 second intervals.

We have also assumed that all of our senders implement
TCP-Reno as described in [4, 17, 16]. In [13, 12], it is ob-
served that the implementation of the protocol stack in each
operating system is slightly di�erent. While we have tried to
account for the signi�cant di�erences (for example in Linux
the TD loss indications occur after two duplicate ACKs),
we have not tried to customize our model for the nuances
of each operating system. For example, we have observed
that the Linux exponential backo� does not exactly follow
the algorithm described in [4, 17, 16]. Our observations also
seem to indicate that in the Irix implementation, the expo-
nential backo� is limited to 25, instead of 26. We are also
aware of the observation made in [13] that the SunOS TCP
implementation is derived from Tahoe and not Reno. We
have not customized our model for these cases.



5 Conclusion

In this paper we have presented a simple model of the TCP-
Reno protocol. The model captures the essence of TCP's
congestion avoidance behavior and expresses throughput as
a function of loss rate. The model takes into account the
behavior of the protocol in the presence of timeouts, and is
valid over the entire range of loss probabilities.

We have compared our model with the behavior of sev-
eral real-world TCP connections. We observed that most
of these connections su�ered from a signi�cant number of
timeouts. We found that our model provides a very good
match to the observed behavior in most cases, while models
proposed in [6, 7, 10] signi�cantly overestimate throughput.
Thus, we conclude that timeouts have a signi�cant impact
on the performance of the TCP protocol, and that our model
is able to account for this impact.

We have also presented a simpli�ed expression for TCP
bandwidth in Equation (32), which is a good approximation
for the proposed model in most cases. This simple approxi-
mation can be used in protocols such as those described in
[19, 20] to ensure \TCP-friendliness'.

A number of avenues for future work remain. First, our
model can be enhanced to account for the e�ects of fast re-
covery and fast retransmit. Second, a more precise through-
put calculation can be obtained if the congestion window
size is modeled as a Markov chain. Third, we have assumed
that once a packet in a given round is lost, all remaining
packets in that round are lost as well. This assumption can
be relaxed, and the model can be modi�ed to incorporate a
loss distribution function. Estimating this distribution func-
tion for a given path in the Internet is a signi�cant research
e�ort in itself. Fourth, it is interesting to further investigate
the behavior of TCP over slow links with dedicated bu�ers
(such as modem lines). We are currently investigating more
closely the data sets for which our model is not a good esti-
mator. We are also working on a TCP-friendly protocol to
control transmission of continuous media. This protocol will
use our model to modulate its throughput to ensure TCP
friendliness.

6 Acknowledgments

We would like to thank Gary Wallace and the CSCF sta� at
the Department of Computer Science, University of Mas-
sachusetts, Amherst, for helping us with tcpdump setup
and general system administration. We are grateful to P.
Krishnan of Hofstra University, Zhi-Li Zhang of University
of Minnesota, Andreas Stathopoulos of College of William
and Mary, Peter Wan of Georgia Inst. of Tech., Larry
Peterson of University of Arizona, Lixia Zhnag of Univer-
sity of California, Los Angeles, John Bolot and Phillipe
Nain of INRIA, Chuck Cranor of Washington University,
St. Louis, Grig Gheorhiu of University of Southern Cali-
fornia, Stephen Pink of Swedish Institute of Science, Hen-
ning Schulzerinne of Columbia University, Satish Tripathi of
University of Maryland, College Park, and Sneha Kasera of
University of Massachusetts, Amherst for providing us with
computer accounts that allowed us to gather the data pre-
sented in this paper. We also thank Dan Rubenstein and
the anonymous referees for their helpful comments on earlier
drafts of this paper.

References

[1] J. Bolot and A. Vega-Garcia. Control mechanisms for packet
audio in the Internet. In Proceedings IEEE Infocom96, 1996.

[2] K. Fall and S. Floyd. Simulation-based comparisons of
Tahoe, Reno, and SACK TCP. Computer Communication
Review, 26(3), July 1996.

[3] S. Floyd and V. Jacobson. Random Early Detection gate-
ways for congestion avoidance. IEEE/ACM Transactions on
Networking, 1(4), August 1997.

[4] V. Jacobson. Modi�ed TCP congestion avoidance algorithm.
Note sent to end2end-interest mailing list, 1990.

[5] P. Karn and C. Partridge. Improving Round-Trip time esti-
mates in reliable transport protocols. Computer Communi-
cation Review, 17(5), August 1987.

[6] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based
ow control. Note sent to end2end-interest mailing list, Jan
1997.

[7] M. Mathis, J. Semske, J. Mahdavi, and T. Ott. The macro-
scopic behavior of the TCP congestion avoidance algorithm.
Computer Communication Review, 27(3), July 1997.

[8] S. MCanne and S. Flyod. ns-LBL Network Simulator, 1997.
Obtain via http://www-nrg.ee.lbnl.gov/ns/.

[9] S. Ostermann. tcptrace: TCP dump �le analysis tool, 1996.
http://jarok.cs.ohiou.edu/software/tcptrace/.

[10] T. Ott, J. Kemperman, and M. Mathis. The stationary be-
havior of ideal TCP congestion avoidance. in preprint.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical valida-
tion. Technical report UMASS-CS-TR-1998-08.

[12] V. Paxson. Automated packet trace analysis of TCP imple-
mentations. In Proceedings of SIGCOMM 97, 1997.

[13] V. Paxson. End-to-End Internet packet dynamics. In Pro-
ceedings of SIGCOMM 97, 1997.

[14] V. Paxson and S. Floyd. Why we don't know how to simulate
the Internet. In Proccedings of the 1997 Winter Simulation
Conference, 1997.

[15] S. Ross. Applied Probability Models with Optimization Ap-
plications. Dover, 1970.

[16] W. Stevens. TCP/IP Illustrated, Vol.1 The Protocols.
Addison-Wesley, 1994.

[17] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. RFC2001, Jan
1997.

[18] K. Thompson, G. Miller, and M. Wilder. Wide-area internet
tra�c patterns and charateristics. IEEE Network, 11(6),
November-December 1997.

[19] T. Turletti, S. Parisis, and J. Bolot. Experiments
with a layered transmission scheme over the Internet.
Technical report RR-3296, INRIA, France. Obtain via
http://www.inria.fr/RRRT/RR-3296.html.

[20] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like congestion
control for layered multicast data transfer. In Proceedings of
INFOCOMM'98, 1998.


